Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 21(4): e13562, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246937

RESUMO

Organs age differently, causing wide heterogeneity in multimorbidity, but underlying mechanisms are largely elusive. To investigate the basis of organ-specific ageing, we utilized progeroid repair-deficient Ercc1Δ/- mouse mutants and systematically compared at the tissue, stem cell and organoid level two organs representing ageing extremes. Ercc1Δ/- intestine shows hardly any accelerated ageing. Nevertheless, we found apoptosis and reduced numbers of intestinal stem cells (ISCs), but cell loss appears compensated by over-proliferation. ISCs retain their organoid-forming capacity, but organoids perform poorly in culture, compared with WT. Conversely, liver ages dramatically, even causing early death in Ercc1-KO mice. Apoptosis, p21, polyploidization and proliferation of various (stem) cells were prominently elevated in Ercc1Δ/- liver and stem cell populations were either largely unaffected (Sox9+), or expanding (Lgr5+), but were functionally exhausted in organoid formation and development in vitro. Paradoxically, while intestine displays less ageing, repair in WT ISCs appears inferior to liver as shown by enhanced sensitivity to various DNA-damaging agents, and lower lesion removal. Our findings reveal organ-specific anti-ageing strategies. Intestine, with short lifespan limiting time for damage accumulation and repair, favours apoptosis of damaged cells relying on ISC plasticity. Liver with low renewal rates depends more on repair pathways specifically protecting the transcribed compartment of the genome to promote sustained functionality and cell preservation. As shown before, the hematopoietic system with intermediate self-renewal mainly invokes replication-linked mechanisms, apoptosis and senescence. Hence, organs employ different genome maintenance strategies, explaining heterogeneity in organ ageing and the segmental nature of DNA-repair-deficient progerias.


Assuntos
Envelhecimento , Dano ao DNA , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Dano ao DNA/genética , Reparo do DNA , Camundongos , Organoides/metabolismo , Células-Tronco/metabolismo
2.
Sci Rep ; 9(1): 6068, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988473

RESUMO

X chromosome inactivation (XCI) is a mammalian specific, developmentally regulated process relying on several mechanisms including antisense transcription, non-coding RNA-mediated silencing, and recruitment of chromatin remodeling complexes. In vitro modeling of XCI, through differentiation of embryonic stem cells (ESCs), provides a powerful tool to study the dynamics of XCI, overcoming the need for embryos, and facilitating genetic modification of key regulatory players. However, to date, robust initiation of XCI in vitro has been mostly limited to mouse pluripotent stem cells. Here, we adapted existing protocols to establish a novel monolayer differentiation protocol for rat ESCs to study XCI. We show that differentiating rat ESCs properly downregulate pluripotency factor genes, and present female specific Xist RNA accumulation and silencing of X-linked genes. We also demonstrate that RNF12 seems to be an important player in regulation of initiation of XCI in rat, acting as an Xist activator. Our work provides the basis to investigate the mechanisms directing the XCI process in a model organism different from the mouse.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , RNA Longo não Codificante/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Inativação do Cromossomo X/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Masculino , Modelos Animais , Cultura Primária de Células , Ratos
3.
Nat Commun ; 9(1): 4752, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420655

RESUMO

In mice, imprinted X chromosome inactivation (iXCI) of the paternal X in the pre-implantation embryo and extraembryonic tissues is followed by X reactivation in the inner cell mass (ICM) of the blastocyst to facilitate initiation of random XCI (rXCI) in all embryonic tissues. RNF12 is an E3 ubiquitin ligase that plays a key role in XCI. RNF12 targets pluripotency protein REX1 for degradation to initiate rXCI in embryonic stem cells (ESCs) and loss of the maternal copy of Rnf12 leads to embryonic lethality due to iXCI failure. Here, we show that loss of Rex1 rescues the rXCI phenotype observed in Rnf12-/- ESCs, and that REX1 is the prime target of RNF12 in ESCs. Genetic ablation of Rex1 in Rnf12-/- mice rescues the Rnf12-/- iXCI phenotype, and results in viable and fertile Rnf12-/-:Rex1-/- female mice displaying normal iXCI and rXCI. Our results show that REX1 is the critical target of RNF12 in XCI.


Assuntos
Impressão Genômica , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Inativação do Cromossomo X/genética , Animais , Embrião de Mamíferos/metabolismo , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Células-Tronco Embrionárias Murinas/metabolismo , Fenótipo , Estabilidade Proteica , Ubiquitina-Proteína Ligases/deficiência
4.
Methods Mol Biol ; 1861: 131-147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30218365

RESUMO

Fluorescent in situ hybridization (FISH) is a powerful cytogenetic technique that allows the visualization and quantification of RNA and DNA molecules in different cellular contexts. In general, FISH applications help to advance research, cytogenetics, and diagnostics. DNA FISH can be applied, for example, for gene mapping and for detecting genetic aberrations. RNA FISH provides information about gene expression. However, in cases where RNA and DNA molecules need to be detected in the same sample, the result is often compromised by the fact that the tissue sample is damaged due to the multitude of processing steps that are required for each application. In addition, the sequential application of RNA and DNA FISH protocols on the same sample is very time consuming. Here we describe a brief protocol that enables the combined and simultaneous detection of Xist RNA and centromeric DNA of chromosome 6 in mouse preimplantation embryos. In addition, we describe how to generate indirect-labeled probes starting from BACs. This protocol may be applied to any combination of RNA and DNA detection.


Assuntos
Blastocisto/metabolismo , Centrômero/metabolismo , DNA/análise , Hibridização in Situ Fluorescente/métodos , RNA Longo não Codificante/análise , Inativação do Cromossomo X , Animais , Blastocisto/química , Células Cultivadas , Epigenômica/métodos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos
5.
Epigenetics Chromatin ; 10: 11, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293300

RESUMO

BACKGROUND: In the nuclei of most mammalian cells, pericentric heterochromatin is characterized by DNA methylation, histone modifications such as H3K9me3 and H4K20me3, and specific binding proteins like heterochromatin-binding protein 1 isoforms (HP1 isoforms). Maintenance of this specialized chromatin structure is of great importance for genome integrity and for the controlled repression of the repetitive elements within the pericentric DNA sequence. Here we have studied histone modifications at pericentric heterochromatin during primordial germ cell (PGC) development using different fixation conditions and fluorescent immunohistochemical and immunocytochemical protocols. RESULTS: We observed that pericentric heterochromatin marks, such as H3K9me3, H4K20me3, and HP1 isoforms, were retained on pericentric heterochromatin throughout PGC development. However, the observed immunostaining patterns varied, depending on the fixation method, explaining previous findings of a general loss of pericentric heterochromatic features in PGCs. Also, in contrast to the general clustering of multiple pericentric regions and associated centromeres in DAPI-dense regions in somatic cells, the pericentric regions of PGCs were more frequently organized as individual entities. We also observed a transient enrichment of the chromatin remodeler ATRX in pericentric regions in embryonic day 11.5 (E11.5) PGCs. At this stage, a similar and low level of major satellite repeat RNA transcription was detected in both PGCs and somatic cells. CONCLUSIONS: These results indicate that in pericentric heterochromatin of mouse PGCs, only minor reductions in levels of some chromatin-associated proteins occur, in association with a transient increase in ATRX, between E11.5 and E13.5. These pericentric heterochromatin regions more frequently contain only a single centromere in PGCs compared to the surrounding soma, indicating a difference in overall organization, but there is no de-repression of major satellite transcription.


Assuntos
Células Germinativas/metabolismo , Heterocromatina/metabolismo , Animais , Centrômero/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Embrião de Mamíferos/metabolismo , Inativação Gênica , Células Germinativas/citologia , Células Germinativas/crescimento & desenvolvimento , Histonas/metabolismo , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
6.
PLoS Genet ; 12(10): e1006358, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27716834

RESUMO

In mouse female preimplantation embryos, the paternal X chromosome (Xp) is silenced by imprinted X chromosome inactivation (iXCI). This requires production of the noncoding Xist RNA in cis, from the Xp. The Xist locus on the maternally inherited X chromosome (Xm) is refractory to activation due to the presence of an imprint. Paternal inheritance of an Xist deletion (XpΔXist) is embryonic lethal to female embryos, due to iXCI abolishment. Here, we circumvented the histone-to-protamine and protamine-to-histone transitions of the paternal genome, by fertilization of oocytes via injection of round spermatids (ROSI). This did not affect initiation of XCI in wild type female embryos. Surprisingly, ROSI using ΔXist round spermatids allowed survival of female embryos. This was accompanied by activation of the intact maternal Xist gene, initiated with delayed kinetics, around the morula stage, resulting in Xm silencing. Maternal Xist gene activation was not observed in ROSI-derived males. In addition, no Xist expression was detected in male and female morulas that developed from oocytes fertilized with mature ΔXist sperm. Finally, the expression of the X-encoded XCI-activator RNF12 was enhanced in both male (wild type) and female (wild type as well as XpΔXist) ROSI derived embryos, compared to in vivo fertilized embryos. Thus, high RNF12 levels may contribute to the specific activation of maternal Xist in XpΔXist female ROSI embryos, but upregulation of additional Xp derived factors and/or the specific epigenetic constitution of the round spermatid-derived Xp are expected to be more critical. These results illustrate the profound impact of a dysregulated paternal epigenome on embryo development, and we propose that mouse ROSI can be used as a model to study the effects of intergenerational inheritance of epigenetic marks.


Assuntos
Desenvolvimento Embrionário/genética , Herança Paterna/genética , RNA Longo não Codificante/genética , Inativação do Cromossomo X/genética , Animais , Blastocisto , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Oócitos/crescimento & desenvolvimento , Deleção de Sequência/genética , Espermátides/metabolismo , Cromossomo X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...